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This paper emphasizes approximation methods based on Taylor series, butwe also give some initial ideas, motivations, and remarks on the inclusion ofthe solution of sti� ODEs (Section 5). We compare several numerical meth-ods based on Taylor series to evaluate their suitability for use as methodsfor the veri�ed inclusion of sti� di�erential equations.This is a report on work in progress. Some numerical experiments havebeen done, but much more experimental and theoretical work remains tobe done. Another manuscript [7] is in preparation describing in detail therelationship of the implicit Taylor series methods described here to implicitmethods based on Pad�e approximations.2 Sti�nessIn this paper, we present initial steps towards algorithms for solving sti�systems of ODEs based on Taylor series. We begin with a brief survey oftheory and point algorithms for sti� problems. The modeling of evolution,or growth, processes in many applied sciences often leads to sti� ordinarydi�erential equations. The initial value problemy0 = �y; y(0) = y0 with �� 0 (2:1)is a simple example of a sti� problem. It shows the following characteristicbehavior:(i) The Lipschitz constant L = j�j of the right-hand side is very large.(ii) For y0 = 0, the solution y(t) � 0 is smooth.(iii) For y0 6= 0, the solution y(t) = e�ty0 is rapidly decaying and veryunsmooth in the sense that derivatives are large during the initial\transient phase." Away from t = 0, the solution becomes smoothvery quickly and tends towards the smooth solution (\smooth phase").In most practical situations, rapidly decaying components (corresponding to� � 0) occur together with smooth (nonsti�) components. Such a systemquickly tends towards an \equilibrium," that is, to a smooth solution. Rapidvariations occur only while the state of equilibrium has not yet been reached2



or when the system is switched from one state to another (e.g., by nonlineare�ects).Although it is di�cult to give a mathematically rigorous de�nition of sti�-ness, we call a system y0 = f(y) (2.2)y(0) = y0sti� if its Jacobian fy (in a neighborhood of the solution) has eigenvalues�i with Re(�i) � 0, in addition to eigenvalues of moderate size. (The au-tonomous notation of (2.2) is only for technical simpli�cation of the formulasin sections 3 to 5.)Sti� systems are considered di�cult because explicit numerical methodsdesigned for nonsti� problems are forced to use very small steps. If \normal"steps are used, then perturbations in the computed solution are ampli�ed bythe in
uence of the Lipschitz constant L� 0. In order to retain the stabilityof the true solution in the computed solution, the step must be very small.It is not possible to use a step size that is adjusted to the smoothness of thesolution sought. That is why authors as early as 1928 [8] or 1947 [9] wereled to consider implicit methods in which the approximate solution yi+1 att = ti+1 is given by the solution to some nonlinear system. Many implicitmethods allow step sizes appropriate to the smoothness of the solution.Historically, the �rst theoretical concept especially suited for the assessmentof numerical methods for sti� problems was A-stability [11]. A-stabilitymeans that computed numerical approximations to decreasing componentsare also decreasing. This analysis is based on the model linear constantcoe�cient problem y0 = Ay. The concept of B-stability [15] is the basis fora general convergence theory for nonlinear sti� problems. Nevertheless, weuse the linear concept A-stability as a �rst criterion for the assessment ofimplicit procedures based on Taylor series methods.The general algorithm for implicit methods for sti� systems is as follows:InitializeLoop for each integration stepGuess step sizeSolve some nonlinear system for yi+1Estimate error 3



Accept or reject stepWell-known examples of methods of this class that are suitable for the in-tegration of sti� systems are backward di�erentiation formulas (BDFs) [10]and implicit Runge-Kutta methods [4] and [12]. Our contribution is to useTaylor series to formulate the nonlinear system for yi+1.Any numerical one-step method applied to (2.1) reduces toyi+1 = R(z)yi z = h�; (2:3)where R : C ! C is a polynomial or (in the case of implicit methods) arational function with real coe�cients. R(z) is called the stability functionof the method.De�nition: A numerical method applied to (2.1) as well as its stabilityfunction R(z) is called A-stable if the left half-plane fz : Re(z) � 0g iscontained in the region fz : jR(z)j � 1g.On the one hand, the de�nition of A-stability is too weak: only linear prob-lems with constant coe�cients are covered. On the other hand, the de�nitionis too strong: many methods that perform well in practice are not A-stable.Thus we are led to the following generalization.De�nition: A numerical method is A(�)-stable if the sector fz : jarg(�z)j ��; z 6= 0g is contained in the stability region fz : jR(z)j � 1g.In contrast to A-stable methods, there exists little nonlinear convergencetheory in the literature for methods that are only A(�)-stable. A step inthis direction for BDFs was given by Lubich [19].We were led to consider implicit Taylor series methods for the validatedsolution of initial value problems for sti� ODEs because explicit Taylor seriesmethods that have proven e�ective for nonsti� systems [6, 2] cannot beexpected to handle highly sti� systems successfully and because Lohner'sprogram AWA [18]) has proven so successful using Taylor series methods forcomputing inclusions. 4



3 Implicit Taylor Series Methods (ITSM)The �rst formulations of ITSM are due to Chang and Corliss [5] and toStetter [25]. Let us start by recalling explicit Taylor series methods. Let yibe an approximation for the solution of (2.2) at t = ti. The explicit Taylorseries method uses recurrence relations derived from the ODE to generatethe series for y(t) expanded at ti. Thenyi+1 := yi + kXj=1 fj�1(yi) hjj! ; (3:4)where fj�1(y) := djydtj for j = 0, : : :, k�1, and h := ti+1� ti is taken as largeas possible consistent with error control constraints.The simplest form of the ITSM is as follows:InitializeLoop for each integration stepGuess step sizeLoopGuess or improve yi+1Generate series for y expanded at t = ti+1Exit loop when yi = yi+1 +Pkj=1 fj�1(yi+1) (ti�ti+1)jj! is satis�ed within toleranceEstimate errorAccept or reject stepThe series at t = ti+1 is generated by using exactly the same recurrencerelations as in the explicit method. That is, each fj�1(yi+1) is some non-linear function of yi+1. The di�erence is that the \initial condition" yi+1is determined by a Newton iteration, rather than being given by analyticcontinuation at the previous step. See Figure 1.The Newton iteration for the equationyi = yi+1 + kXj=1 fj�1(yi+1) (ti � ti+1)jj! (3:5)5



Figure 1: Implicit Taylor series methodrequires@@yi+1 0@yi+1 + kXj=1 fj�1(yi+1) (ti � ti+1)jj! 1A = 1I+ kXj=1 @@yi+1 (fj�1(yi+1)) (ti � ti+1)jj! ;(3:6)which is computed from the solution of the variational equation U 0 = @f@yU[17].The stability function R(z) corresponding to this method is a (0; k)�Pad�eapproximation to the exponential exp(z) [12], where k is the degree of theTaylor series. It is well known that the (m; k)�Pad�e approximation is theunique rational function with numerator and denominator of degree m andk, respectively, which approximates exp(z) to O(zk+m+1) as z ! 0.An (m; k)�Pad�e approximation to exp(z) is A-stable if and only if k � 2 �m � k. That is, the diagonal and two subdiagonals in the Pad�e scheme areA-stable (see [12] and [13]).In our case, only implicit Taylor series of degree 1 and 2 lead to A-stableITSM. For degree k = 1, the resulting method is the implicit Euler method,whose stability and convergence properties are well known. For degree k = 2,the resulting method corresponds to a special Runge-Kutta scheme, LobattoIIIC with the number of stages s = 2. The corresponding stability functionis a (s � 2; s)�Pad�e approximation. Schneid [24] showed that the Lobatto6



Figure 2: Stability regions of the (0; k)�Pad�e approximation for k =1, 2, 3,4, 5, 6IIIC method for s = 2 is not only A-stable, but also B-convergent of order2 under some reasonable step-size restrictions.The corresponding stability regions for the (0; k)�Pad�e approximation (seeFigure 2) were drawn by using the software product S [3]. Sand and �sterby[23] give stability regions for certain Runge-Kutta methods that are quali-tatively similar to Figure 2.4 Implicit � Taylor Series Methods (I�TSM)The lack of A-stability of the simple ITSM for higher orders suggests thatwe try to increase the degree of the numerator in the corresponding rationalstability function.The ITSM matches the previously computed yi, with the value obtained byexpanding the solution at ti+1. The I�TSM generates the Taylor series atboth ti and ti+1. The condition that the two series agree at ti + �(ti+1� ti),� 2 (0; 1), provides the nonlinear equation for yi+1 (see Figure 3).7



Figure 3: Implicit � Taylor series methodThe test yi � yi+1 + kXj=1 fj�1(yi+1) (ti � ti+1)jj! (4:7)in the ITSM is now replaced by the testyi + mXj=1 fj�1(yi) �j(ti+1 � ti)jj! � yi�1 + kXj=1 fj�1(yi+1) (� � 1)j(ti+1 � ti)jj! :(4:8)In general, m need not be equal to k. The I�TSM requires almost no workbeyond that required by the ITSM. The series at ti+1 must be recomputedfor each new iterate yi+1, as in the ITSM described in Section 3. The seriesat ti, however, is computed only once per step, and this computation hasalready been done at the end of the previous step. Here, � is a tuningparameter of the method. The case � = 1 represents an explicit Taylorseries, whereas � = 0 leads to the fully implicit form of Section 3. The case� = 12 is the unique choice of � for which the resulting method is A-stable,for any order m = k. Unfortunately, the resulting stability function is not aPad�e approximation if the orders m; k of the Taylor series are higher than 1.Hence, the maximal achievable order of the local truncation error is reducedcompared to the maximal possible order for the Pad�e approximation.Remark: The I�TSM with k = m = 1 and � = 12 is the well-known implicittrapezoidal rule, which is A-stable, but not B-stable.8



In a forthcoming paper [7], a class of high-order sti� ordinary di�erentialequations solvers based on Pad�e approximations is introduced and analyzed.In this approach, the advantages of Taylor series methods mentioned aboveare maintained and combined with highest possible order of the local trun-cation error. A general nonlinear stability analysis remains to be done.5 Implications for Interval MethodsThe �rst task when developing an algorithm for validated inclusions of so-lutions to sti� problems is to understand an interval analog of the implicitEuler scheme yi+1 = yi + hf(yi+1). Let ~yi represent an approximate solu-tion, and let [ei] be an interval inclusion for the corresponding error. Werepresent an interval-valued solution at ti as [yi] = ~yi + [ei]. The implicitEuler method becomesen+1 � hfy(~yn+1 + [0; 1] en+1) � en+1 = en � h22 fy(�y) � f(�y); (5:9)for en 2 [en], and �y contained in an a-priori inclusion �Yn+1; the approximatesolution ~yn+1 at tn+1 is chosen such that ~yn+1 = ~yn + hf(~yn+1). This isa nonlinear system of interval equations. In the special case of a linearconstant coe�cient problem y0 = Ay, the corresponding system reduces to alinear system with interval right-hand side. The methods presented in thispaper can be viewed as higher-order generalizations of this simplest implicitscheme.Another di�culty in the case of sti�ness is the inevitably large Lipschitzconstant L of the right-hand f(y). This would cause a severe and unreal-istic step-size restriction whenever the Picard-Lindel�of existence theorem isapplied to get an a-priori inclusion. Subtle algorithms have to be developed.During the preparation of this manuscript, we received Kreuser's diplomathesis [16], which presents an alternative approach to computing inclusionsof solutions for sti� ODEs. Kreuser's approach transforms the original sti�system (2.2) into the new systemy0 = Ay + (f(y)� Ay);where A is a local approximation of the Jacobian fy(y). The a-priori inclu-sion is obtained by symbolic computation of the matrix exponential function,9
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